تعداد نشریات | 9 |
تعداد شمارهها | 75 |
تعداد مقالات | 590 |
تعداد مشاهده مقاله | 1,294,249 |
تعداد دریافت فایل اصل مقاله | 1,103,646 |
Multi Objective Scheduling of Utility-scale Energy Storages and Demand Response Programs Portfolio for Grid Integration of Wind Power | ||
Journal of Operation and Automation in Power Engineering | ||
مقاله 2، دوره 4، شماره 2، زمستان 2016، صفحه 104-116 اصل مقاله (686 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
E. Heydarian-Forushani ![]() | ||
1Isfahan University of Technology | ||
2Imam Hussein University | ||
چکیده | ||
Increasing the penetration of variable wind generation in power systems has created some new challenges in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy storages (ESs) are known as two powerful flexible tools that can improve large-scale integration of intermittent wind power from technical and economic aspects. Under this perspective, this paper proposes a multi objective stochastic framework that schedules conventional generation units, bulk ESs, and DR resources simultaneously with the application to wind integration. The proposed formulation is a sophisticated problem which coordinates supply-side and demand-side resources in energy and up/down spinning reserve markets so that the cost, emission, and multi objective functions are minimized separately. In order to determine the most efficient DR program which can potentially coordinate with bulk ESs in the system with a significant amount of wind power, a comprehensive DR programs portfolio including time- and incentive-based programs is designed. Afterwards, strategy success index (SSI) is employed to prioritize DR programs from independent system operator (ISO) perspective. The IEEE-RTS is used to reveal the effectiveness of the proposed method. | ||
کلیدواژهها | ||
Bulk energy storages؛ Demand response programs؛ Electricity market؛ Wind power generation | ||
عنوان مقاله [English] | ||
برنامه ریزی چندهدفه ذخیره سازهای انرژی مقیاس بزرگ و منابع پاسخگویی بار با هدف یکپارچه سازی توان بادی | ||
نویسندگان [English] | ||
احسان حیدریان فروشانی1؛ حبیب اله اعلمی2 | ||
چکیده [English] | ||
افزایش نفوذ تولید منابع بادی متغیر در سیستمهای قدرت سبب بروز چالشهایی در بهرهبرداری سیستم قدرت شده است. در این شرایط، بکارگیری منابع انعطافپذیر که دارای پتانسیل تسهیل کردن یکپارچهسازی تولید بادی میباشند، ضروری است. منابع پاسخگوییبار و ذخیرهسازهای انرژی بزرگ مقیاس نوظهور به عنوان دو ابزار انعطافپذیر قدرتمند هستند که میتوانند یکپارچهسازی منابع بادی دارای عدم قطعیت را از جنبههای فنی و اقتصادی بهبود دهند. تحت این نظریه، این مقاله یک چارچوب تصادفی چندهدفه ارائه میدهد که به برنامهریزی همزمان نیروگاههای سنتی، ذخیرهسازهای انرژی مقیاس بزرگ و منابع پاسخگویی بار با هدف یکپارچهسازی تولیدات بادی میپردازد. فرمولاسیون ارائه شده یک مساله پیچیده است که به هماهنگی منابع سمت عرضه و تقاضا در بازارهای انرژی و ذخیره چرخان بالا و پایین میپردازد به نحوی که توابع هزینه، انتشار آلاینده و چندین هدف دیگر به صورت مجزا حداقلسازی شوند. به منظور تعیین کارآمدترین برنامه پاسخگویی بار که پتانسیل هماهنگی با ذخیرهسازهای مقیاس بزرگ را در سیستمهای با نفوذ بالای منابع بادی داشته باشد، سبد جامعی از برنامههای پاسخگوییبار شامل برنامههای مبتنی بر تعرفه و تشویق طراحی شده است. همچنین، به منظور اولویتبندی برنامههای پاسخگویی بار از دیدگاه بهرهبردار سیستم از شاخص موفقیت استراتژی استفاده شده است. سیستم استاندارد نمونه IEEE-RTS جهت نشان دادن کارآمدی روش پیشنهادی استفاده شده است. | ||
کلیدواژهها [English] | ||
انرژی بادی, برنامه های پاسخگویی بار, ذخیره سازهای انرژی, بازار برق | ||
مراجع | ||
[1] F.Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504-510, 2003. [2] S. Torabzad, E. Babaei, and M. Kalantari, “Z-source inverter based dynamic voltage restorer,” in Proce. of thePEDSTC, pp. 406-411, 2010. [3] X. Ding, Z. Qian, Y. Xie, and F.Z. Peng, “Transient modeling and control of the novel ZVS Z-source rectifier,” in Proce. of thePESC, pp. 1-5, 2006. [4] M.R. Banaei, R. Alizadeh, N. Jahanyari, and E. Seifi Najmi, “An ac Z-source converter based on gamma structure with safe-commutation strategy,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1255-1262, 2016. [5] F. Sedaghati, and E. Babaei, “Double input dc-dc Z-source converter,” in Proce. of thePEDSTC, pp. 581-586, 2011. [6] F.Z. Peng, M. Shen, and Z. Qian, “Maximum boost control of the Z-source inverter,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 833-838, 2005. [7] M. Shen, J. Wang, A. Joseph, F.Z. Peng, L.M. Tolbert, and D.J Adams, “Constant boost control of the Z-source inverter to minimize current ripple and voltage stress,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 770-778, 2006. [8] S.R. Aghdam, E. Babaei, and S. Laali, “Maximum constant boost control method for switched-inductor Z-source inverter by using battery,” in Proc. of the IECON, 2013, pp. 984-989. [9] N. Mirkazemian and E. Babaei, “A new topology for quasi-Z-source inverter,” in Proce. of the PSC, 2015, pp. 1-7. [10] H. Rostami, and D.A. Khaburi, “Voltage gain comparison of different control methods of the Z-source inverter,” in Proc. of the ELECO, pp. 268-272, 2009. [11] U.S. Ali, and V. Kamaraj, “A novel space vector PWM for Z-source inverter,” in Proc. of the ICEES, pp. 82-85, 2011. [12] J.W. Jung, and A. Keyhani, “Control of a fuel cell based Z-source converter,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 467-476, 2007. [13] O. Ellabban, J.V. Mierlo, and P. Lataire, “Experimental study of the shoot-through boost control methods for the Z-source inverter,” EPEJ, vol. 21, no. 2, pp. 18-29, 2011. [14] Y. Liu, B. Ge, F.J.T.E. Ferreira, A.T. de Almeida, and H.A. Rub, “Modelling and SVPWM control of quasi-Z-source inverter,” in Proc. of the EPQU, pp. 1-7, 2011. [15] Y. Liu, B. Ge, H.A. Rub, and F.Z. Peng, “Overview of space vector modulations for three-phase Z-source/quasi-Z-source inverters,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 2098-2108, 2014. [16] Y. Liu, B. Ge, and H.A. Rub, “Theoretical and experimental evaluation of four space vector modulations applied to quasi-Z-source inverters,” IET Power Electron., vol. 6, no. 7, pp. 1257-1269, 2013. [17] Y.P. Siwakoti, and G.E. Town, “Three-phase transformerless grid connected quasi Z-source inverter for solar photovoltaic systems with minimal leakage current,” in Proc. of the PEDG, pp. 368-373, 2012. [18] F. Bradaschia, M.C. Cavalcanti, P.E.P. Ferraz, F.A.S. Neves, E.C. dos Santos, and J.H.G.M. da Silva, “ Modulation for three-phase transformer-less Z-source inverter to reduce leakage currents in photovoltaic systems,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5385-5395, 2011. [19] Y.P. Siwakoti, and G.E. Town, “Common-mode voltage reduction techniques of three-phase quasi Z-source inverter for AC drives,” in Proc. of the APEC, 2013, pp. 2247-2252. [20] S.R. Aghdam, E. Babaei, and S. Ghasemzadeh, “Improvement the performance of switched-inductor Z-source inverter,” in Proc. of theIECON, 2013, pp. 876-881. [21] M.S. Zarbil, E. Shokati Asl, E. Babaei, and M. Sabahi, “A new structure for quasi-Z-source inverter based on switched inductors and transformer,” Iran. Electr. Ind. J. Qual. Prod., vol. 4, no. 8, pp. 63-73, 2016. [22] E. Babaei, M. Hasan Babayi, E. Shokati Asl, and S. Laali, “A new topology for Z-source inverter based on switched-inductor and boost Z-source inverter,” J. Oper. Autom. Power Eng., vol. 3, no. 2, pp. 167-184, 2015. [23] E. Babaei, E. Shokati Asl, M.H. Babayi, “Steady-state and small-signal analysis of high voltage gain half-bridge switched-boost inverter,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3546-3553, 2016. [24] R. Strzelecki, and N. Strzelecka, “Simulation investigation of the Z-source NPC inverter,” Doctoral school of energy- and geo-technology, Kuressaare, Estonia, pp. 213-218, 2007. [25] F. Zhang, F.Z. Peng, and Z. Qian, “Z-H converter,” in Proce. of the PESC, 2008, pp. 1004-1007. [26] T. Ahmadzadeh, and E. Babaei, “Z-H buck converter: Analysis and simulation,” in Proc. of thePEDSTC, pp. 436-441, 2015. [27] E. Babaei, M. Hasan Babayi, E. Shokati Asl, S. Laali, “A new topology for Z-source inverter based on switched-inductor and boost Z-source inverter,” J. Oper. Autom. Power Eng., vol. 2, no. 2, pp. 167-184, 2015. [28] V.P. Galigekere and M.K. Kazimierczuk, “Analysis of PWM Z-source dc-dc converter in CCM for steady-state,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 59, no. 4, pp. 854-863, 2012. [29] E. Babaei, E. Shokati Asl, M.H. Babayi, and S. Laali, “Developed embedded switched-Z-source inverter,” IET Power Electron., vol. 9, no. 9, pp. 1828-1841, 2016. | ||
آمار تعداد مشاهده مقاله: 963 تعداد دریافت فایل اصل مقاله: 823 |
||