تعداد نشریات | 9 |
تعداد شمارهها | 87 |
تعداد مقالات | 696 |
تعداد مشاهده مقاله | 1,450,833 |
تعداد دریافت فایل اصل مقاله | 1,277,359 |
An Intelligent Method Based on WNN for Estimating Voltage Harmonic Waveforms of Non-monitored Sensitive Loads in Distribution Network | ||
Journal of Operation and Automation in Power Engineering | ||
مقاله 2، دوره 6، شماره 1، بهار و تابستان 2018، صفحه 13-22 اصل مقاله (929 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/joape.2018.3533.1280 | ||
نویسندگان | ||
A. ِDeihimi ![]() | ||
1Bu-Ali Sina University, Department of Electrical Engineering | ||
2Bu-Ali Sina University, Department of Electrical Engineering, | ||
چکیده | ||
An intelligent method based on wavelet neural network (WNN) is presented in this study to estimate voltage harmonic distortion waveforms at a non-monitored sensitive load. Voltage harmonics are considered as the main type of waveform distortion in the power quality approach. To detect and analyze voltage harmonics, it is not economical to install power quality monitors (PQMs) at all buses. The cost associated with the monitoring procedure can be reduced by optimizing the number of PQMs to be installed. The main aim of this paper is to further reduce the number of PQMs through recently proposed optimum allocation approaches. An estimator based on WNN is presented in this study to estimate voltage-harmonic waveforms at a non-monitored sensitive load using current and voltage at a monitored location. Since capacitors and distributed generations (DGs) have a special role in distribution networks, they are considered in this paper and their effects on the harmonic voltage waveform estimator are evaluated. The proposed technique is examined on the IEEE 37-bus network. Results indicate the acceptable high accuracy of the WNN estimator. | ||
کلیدواژهها | ||
Distributed network؛ Power quality monitoring؛ Voltage harmonic؛ Wavelet neural network | ||
عنوان مقاله [English] | ||
ارائه یک روش هوشمند مبتنی بر شبکه عصبی موجک برای تخمین شکل موج ولتاژ هارمونیک بارهای فاقد مانیتور شبکه توزیع | ||
نویسندگان [English] | ||
علی دیهیمی1؛ ابوالفضل رحمانی2 | ||
چکیده [English] | ||
دراین مقاله یک روش هوشمند مبتنی بر شبکه عصبی موجک برای تخمین شکل موج ولتاژ هارمونیک بار حساس فاقد مانیتور ارائه می گردد. یکی از مسائل و مشکلات اصلی کیفیت برق در سیستمهای توزیع هارمونیک ولتاژ است. مانیتورینگ سیستم قدرت، معضلات کیفیت توان را مشخص می کند. مانیتورهایی که برای این منظور استفاده می گردند وسایل گرانقیمتی محسوب می شوند لذا نصب آنها در تمامی باسهای شبکه مقرون به صرفه نیست. کاهش هزینه برنامه های مانیتورینگ با بهینه کردن تعداد مانیتورها قابل دستیابی است. هدف اصلی این مقاله کاهش بیشتر تعداد مانیتورهای کیفیت توان می باشد که قبلا تعداد بهینه آنها توسط روشهای بهینه سازی بدست آمده است. در این مقاله یک تخمین گر مبتنی بر شبکه عصبی موجک ارائه شده است تا با استفاده از آن بتوان شکل موج ولتاژ بار حساس فاقد مانیتور شبکه توزیع را توسط اطلاعات مانیتورهای دیگر تخمین زد و از این طریق تعداد مانیتورها را کاهش داد. از آنجا که خازن و تولیدات پراکنده نقش مهمی در شبکه های توزیع دارند اثرات آنها بر اعوجاجات هارمونیکی بارهای شبکه توزیع و تخمین گر شکل موج ولتاژ هارمونیکی لحاظ می گردد. شبکه توزیع مورد مطالعه شبکه شعاعی استاندارد37 باس IEEE می باشد روش پیشنهادی بر روی این سیستم پیاده سازی می شود با توجه به نتایج ارزیابی مشاهده می شود که سیستم هوشمند پیشنهادی با دقت بالایی شکل موج ولتاژ بار حساس فاقد مانیتور را توسط اطلاعات نزدیکترین مانیتور تخمین می زند. | ||
کلیدواژهها [English] | ||
شبکه توزیع, مانیتورینگ کیفیت توان, هارمونیک ولتاژ, شبکه عصبی موجک | ||
مراجع | ||
[1] A. Kusko, M.T. Thompson, “Power Quality in Electrical Systems,” McGraw-Hill, 2007.
[2] H. Dehghani, B. Vahidi, R. Naghizadeh, S.H. Hosseinian, “Power quality disturbance classification using a statistical and wavelet-based hidden Markov model with Dempster-Shafer algorithm,” Electr. Power Energy Syst., vol. 47, pp. 368-377, 2013.
[3] A. Kazemi, A. Mohamed, H. Shareef, H. Zayandehroodi, “Optimal power quality monitor placement using genetic algorithm and Mallow’s Cp,” Electr. Power Energy Syst., vol. 53, pp. 564-575, 2013.
[4] C. F. M. Almeida and N. Kagan, “Harmonic state estimation through optimal monitoring systems,” IEEE Trans. Smart Grid., vol. 4, no. 1, pp. 467-478, 2013.
[5] A. Farzanehrafat, N. R. Watson, “Power quality state estimator for smart distribution grids,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2183-2191, 2013.
[6] S. G. Ghiocel, J. H. Chow, G. Stefopoulos, B. Fardanesh, D. Maragal, B. Blanchard, M. Razanousky, and D. B. Bertagnolli, “Phasor-measurement-based state estimation for synchrophasor data quality improvement and power transfer interface monitoring,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 881-888, 2014.
[7] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, “GSA: a gravitational search algorithm,” Inform. Sci., vol. 179, no. 13, pp. 2232-2248, 2009.
[8] D.J. Won, S.I. Moon, “Optimal number and locations of power quality monitors considering system topology,” IEEE Trans. Power Delivery, vol. 23, pp. 288-295, 2008.
[9] Y.Y. Hong, Y.Y. Chen, “Placement of power quality monitors using enhanced genetic algorithm and wavelet transform,” IET Gener. Transm. Distrib., vol. 5, pp. 461-466, 2011.
[10] A. Deihimi, A. Momeni, “Neural estimation of voltage-sag waveforms of non-monitored sensitive loads at monitored locations in distribution networks considering DGs,” Electr. Power Syst. Res., vol. 92, pp. 123-137, 2012.
[11] J. Liu, F. Ponci, A. Monti, C. Muscas, P. A. Pegoraro, and S. Sulis, “Optimal meter placement for robust measurement systems in active distribution grids,” IEEE Trans. Instrum. Meas., vol. 63, no. 5, pp. 1096-1105, 2014.
[12] M. G. Damavandi, V. Krishnamurthy, and J. R. Martí, “Robust meter placement for state estimation in active distribution systems,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp.1972-1982, 2015.
[13] R. Kazemzadeh, E. Najafi Aghdam, M. Fallah, Y. Hashemi, “Performance scrutiny of two control schemes based on DSM and HB in active power filter,” J. Oper. Autom. Power Eng., vol. 2, no. 2, pp. 103-112, 2014.
[14] A. Deihimi, A. Rahmani, “Application of echo state network for harmonic detection in distribution networks,” IET Genera. Transm. Distrib., vol. 11, no. 5, pp. 1094-1101, 2017.
[15] S.K. Jain, S. N. Singh, “Low-order dominant harmonic estimation using adaptive wavelet neural network,” IEEE Trans. Ind. Electron., vol. 61, pp. 428-435, 2014.
[16] B. Renders, K. D. Gussemé, W.R. Ryckaert, K. Stockman, L. Vandevelde, M.H.J. Bollen, “Distributed generation for mitigating voltage dips in low-voltage distribution grids,” IEEE Trans. Power Delivery, vol. 23, pp. 1581-1588, 2008.
[17] R. Song, “Multiple attribute decision making method andapplication based on wavelet neural network,” Control Decis., vol. 15, no. 6, pp. 765-768, 2000.
[18] Q. Zhang, A. Benveniste, “Wavelet networks,” IEEE Trans. Neural Netw., vol. 3, no. 6, pp. 889-898, 1992.
[19] W.H. Kersting, “Radial distribution test feeders,” IEEE/PES., Winter Meeting, 2001.
[20] A. Bertani, C. Bossi, F. Fornari, S. Massucco, S. Spelta, F. Tivegna, “A micro turbine generation system for grid connected and islanding operation,” IEEE PSCE., New York, 2004.
[21] R.C. Dugan, M.F. McGranaghan, S. Santo, H.W. Beaty, “Electrical Power System Quality,” 2nd Ed., McGraw-Hill, New York, 2003.
[22] J.S. LAI, T.S. KEY, “Effectiveness of harmonic mitigation equipment for commercial office buildings,” IEEE Trans. Ind. Appl., vol. 33, pp. 1065-1110, 1997.
[23] N.R. Watson, “Power quality state estimation,” Eur. Trans. Electr. Power, vol. 20, pp. 19-33, 2010.
[24] B. Mohammadi, A. Mokari, H. Seyedi, S. Ghasemzadeh, “An improved under-frequency load shedding scheme in distribution networks with distributed generation,” J. Oper. Autom. Power Engin., vol. 2, no. 1, pp. 22-31, 2007.
[25] Y.G. Hegazy, M.A. Salama, “Identification the relationship between voltage harmonic distortion and the load of harmonic producing devices in distribution networks,” IEEE Can. Conf. Electr. Comput. Engin., pp. 669-674, 1994.
[26] H. E. Mazin, W. Xu, “Determining the harmonic impacts of multiple harmonic-producing loads,” IEEE Trans. Power Delivery, vol. 26, 1187-1195, 2011.
| ||
آمار تعداد مشاهده مقاله: 330 تعداد دریافت فایل اصل مقاله: 179 |
||